The Generalized Multinomial Logit Model
نویسنده
چکیده
The so-called “mixed” or “heterogeneous” multinomial logit (MIXL) model has become popular in a number of fields, especially Marketing, Health Economics and Industrial Organization. In most applications of the model, the vector of consumer utility weights on product attributes is assumed to have a multivariate normal (MVN) distribution in the population. Thus, some consumers care more about some attributes than others, and the IIA property of multinomial logit (MNL) is avoided (i.e., segments of consumers will tend to switch among the subset of brands that possess their most valued attributes). The MIXL model is also appealing because it is relatively easy to estimate. But recently Louviere et al (1999, 2008) have argued that the MVN is a poor choice for modelling taste heterogeneity. They argue that much of the heterogeneity in attribute weights is accounted for by a pure scale effect (i.e., across consumers, all attribute weights are scaled up or down in tandem). This implies that choice behaviour is simply more random for some consumers than others (i.e., holding attribute coefficients fixed, the scale of their error term is greater). This leads to what we call a “scale heterogeneity” MNL model (or S-MNL). Here, we develop a “generalized” multinomial logit model (G-MNL) that nests S-MNL and MIXL. By estimating the S-MNL, MIXL and G-MNL models on ten datasets, we provide evidence on their relative performance. We find that models that account for scale heterogeneity (i.e., G-MNL or SMNL) are preferred to MIXL by the Bayes and consistent Akaike information criteria in all ten data sets. Accounting for scale heterogeneity enables one to account for “extreme” consumers who exhibit nearly lexicographic preferences, as well as consumers who exhibit very “random” behaviour (in a sense we formalize below).
منابع مشابه
On Rank-Ordered Nested Multinomial Logit Model and D-Optimal Design for this Model
In contrast to the classical discrete choice experiment, the respondent in a rank-order discrete choice experiment, is asked to rank a number of alternatives instead of the preferred one. In this paper, we study the information matrix of a rank order nested multinomial logit model (RO.NMNL) and introduce local D-optimality criterion, then we obtain Locally D-optimal design for RO.NMNL models in...
متن کاملOn the development of a semi-nonparametric generalized multinomial logit model for travel-related choices
A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimat...
متن کاملEffect Displays for Multinomial and Proportional-odds Logit Models
An “effect display” is a graphical or tabular summary of a statistical model based on high-order terms in the model. Effect displays have previously been defined by Fox (1987, 2003) for generalized linear models (including linear models). Such displays are especially compelling for complicated models—for example, those including interactions or polynomial terms. This paper extends effect displa...
متن کاملModeling the behavior of disordered taxi drivers of Tehran for choosing passenger and destination
In this study, the manner of private taxis drivers has been investigated for choosing passenger and destination from a fixed point. Therefore, two models called Multinomial and Nested Logit Models have been utilized. The information gained by scrolling in 2016 is the input data, which are in the format of revealed preference, acquired by the verbal interview in Vanak Square in Tehran (Iran). Ba...
متن کاملRational Inattention to Discrete Choices: A New Foundation for the Multinomial Logit Model†‡
Individuals must often choose among discrete actions with imperfect information about their payoffs. Before choosing, they have an opportunity to study the payoffs, but doing so is costly. This creates new choices such as the number of and types of questions to ask. We model these situations using the rational inattention approach to information frictions. We find that the decision maker’s opti...
متن کامل